
1

HPCToolkit: Sampling-based Performance
Tools for Leadership Computing

John Mellor-Crummey
Department of Computer Science

Rice University
johnmc@cs.rice.edu

http://hpctoolkit.org

ALCF INCITE Getting Started Workshop January 29, 2010

2

Acknowledgments
• Staff

— Laksono Adhianto
— Mike Fagan
— Mark Krentel

• Student
— Nathan Tallent

• Alumni
— Gabriel Marin (ORNL)
— Robert Fowler (RENCI)
— Nathan Froyd (CodeSourcery)

• SciDAC project support
— Center for Scalable Application Development Software

– Cooperative agreement number DE-FC02-07ER25800
— Performance Engineering Research Institute

– Cooperative agreement number DE-FC02-06ER25762

3

Challenges
• Gap between typical and peak performance is huge

• Complex architectures are harder to program effectively
— processors that are pipelined, out of order, superscalar
— multi-level memory hierarchy
— multi-level parallelism: multi-core, SIMD instructions

• Complex applications pose challenges
— for measurement and analysis
— for understanding and tuning

• Leadership computing platforms: additional complexity
— more than just computation: communication, I/O
— immense scale
— unique microkernel-based operating systems

4

Performance Analysis Principles
• Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
– instrumentation-based measurement is often problematic

— measure actual system, not a mock up
– fully optimized production code on the platform of interest

• Without effective analysis, measurement is irrelevant
— pinpoint and explain problems in terms of source code

– binary-level measurements, source-level insight
— compute insightful metrics

– “unused bandwidth” or “unused flops” rather than “cycles”

• Without scalability, a tool is irrelevant
— large codes
— large-scale node parallelism + multithreading

5

Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

– dynamic loading (e.g. Linux clusters) vs. static linking (Cray XT, BG/P)
– SPMD parallel codes with threaded node programs
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code (yield actionable results)
– intuitive enough for scientists and engineers
– detailed enough for compiler writers

• Scalable to petascale systems

6

HPCToolkit Design Principles
• Binary-level measurement and analysis

— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

• Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers

7

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

8

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

9

• For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed

• For statically-linked executables (e.g. for BG/P, Cray XT)
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun to measure
– statically-linked applications: measurement library added at link time

 control with environment variable settings
— collect statistical call path profiles of events of interest

10

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

11

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

12

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Visualization
— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight

– e.g. scalability losses, waste, CPI, bandwidth

13

14

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

Measurement

15

• Measure and attribute costs in context
— sample timer or hardware counter overflows
— gather calling context using stack unwinding

Call Path Profiling

16

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

17

Unwinding Optimized Code

• Optimized code presents challenges for unwinding
—optimized code often lacks frame pointers
—no compiler information about epilogues
—routines may have multiple epilogues, multiple frame sizes
—code may be partially stripped: no info about function bounds

• What we need
—where is the return address of the current frame?

– a register, relative to SP, relative to BP
—where is the FP for the caller’s frame?

– a register, relative to SP, relative to BP

• Approach: use binary analysis to support unwinding

Dynamically Loaded Code (Linux)

New code may be loaded/unloaded at any time

• When a new module is loaded
—note new code segment mappings
—build table of new procedure bounds

• When a module is unloaded
—mark end of profiler epoch: code addresses no longer apply
—flush stale cached information

18

Measurement Effectiveness
• Accurate

— PFLOTRAN on Cray XT @ 8192 cores
– 148 unwind failures out of 289M unwinds
– 5e-5% errors

— Flash on Blue Gene/P @ 8192 cores
– 212K unwind failures out of 1.1B unwinds
– 2e-2% errors

— SPEC2006 benchmark test suite (sequential codes)
– fully-optimized executables: Intel, PGI, and Pathscale compilers
– 292 unwind failures out of 18M unwinds (Intel Harpertown)
– 1e-3% error

• Low overhead
— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores

– measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead
— suitable for use on production runs

19

20

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

Effective Analysis

21

22

Recovering Program Structure
• Analyze an application binary

— identify object code procedures and loops
– decode machine instructions
– construct control flow graph from branches
– identify natural loop nests using interval analysis

— map object code procedures/loops to source code
– leverage line map + debugging information
– discover inlined code
– account for many loop and procedure transformations

• Bridges the gap between
— lightweight measurement of fully optimized binaries
— desire to correlate low-level metrics to source level abstractions

Unique benefit of our binary analysis

Analyzing Results with hpcviewer

23

costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display

24

Principal Views
• Calling context tree view

— “top-down” (down the call chain)
— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

• Caller’s view
— “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

• Flat view
— “flatten” the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure

25

• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

Outline

26

The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better

27

Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem

28

Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

29

Performance Analysis with Expectations
• Users have performance expectations for parallel codes

— strong scaling: linear speedup
— weak scaling: constant execution time

• Putting expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

• Execute code on p and q processors; without loss of generality, p < q
• Let Ti = total execution time on i processors
• For corresponding nodes nq and np

– let C(nq) and C(np) be the costs of nodes nq and np

• Expectation:

• Fraction of excess work:

30

 Performance expectation for weak scaling
– work increases linearly with # processors
– execution time is same as that on a single processor

€

Xw (nq) =
C(nq) −C(np)

Tq€

C(nq) = C(np)

Weak Scaling Analysis for SPMD Codes

parallel overhead

total time

31

 Performance expectation for strong scaling
– work is constant
– execution time decreases linearly with # processors

Strong Scaling Analysis for SPMD Codes

• Execute code on p and q processors; without loss of generality, p < q
• Let Ti = total execution time on i processors
• For corresponding nodes nq and np

– let C(nq) and C(np) be the costs of nodes nq and np

• Expectation:

• Fraction of excess work:

€

Xs(C,nq) =
qCq (nq) − pCp (np)

qTq

parallel overhead

total time

200K

400K600K

32

Pinpointing and Quantifying Scalability Bottlenecks

=P × − Q ×

P Q

Scaling on Multicore Processors
• Compare performance

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

33

Multicore Losses at the Procedure Level

34

Multicore Losses at the Loop Level

35

36

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

Where to Find HPCToolkit
• DOE Systems

— jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
— intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
— franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit

• NSF Systems
— ranger: /scratch/projects/hpctoolkit/pkgs/hpctoolkit

• For your local Linux systems, you can download and install it
— documentation, build instructions, link to our svn repository

– svn repository: https://outreach.scidac.gov/hpctoolkit
— we recommend downloading and building from svn
— important notes:

– obtaining information from hardware counters requires downloading
and installing PAPI

– installing PAPI
 on Linux 2.6.32 or better: built-in kernel support for counters
 earlier Linux needs a kernel patch (perfmon2 or perfctr)

37

Available Guides
http://hpctoolkit.org/documentation.html

• Using HPCToolkit with statically linked programs [pdf]
— a guide for using hpctoolkit on BG/P and Cray XT

• Quick start guide [pdf]
— essential overview that almost fits on one page

• The hpcviewer user interface [pdf]

• Effective strategies for analyzing program performance with
HPCToolkit [pdf]
— analyzing scalability, waste, multicore performance ...

• HPCToolkit and MPI [pdf]

• HPCToolkit Troubleshooting [pdf]
— why don’t I have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can I do?

38

Setup
• Add hpctoolkit’s bin directory to your path

— see earlier slide for HPCToolkit’s HOME directory on your system

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• Decide what hardware counters to monitor
— dynamically-linked executables (e.g., Linux)

– use hpcrun -L to learn about counters available for profiling
– use papi_avail

 you can sample any event listed as “profilable”
— statically-linked executables (e.g., Cray XT, BG/P)

– use hpclink to link your executable
– launch executable with environment var HPCRUN_EVENT_LIST=LIST

 (currently BG/P hardware counters unsupported)
39

Launching your Job
• Modify your run script to enable monitoring

— Cray XT: set environment variable in your PBS script
– e.g. setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000

PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000
PAPI_FP_OPS@400000”

— Blue Gene/P: pass environment settings to qsub
– qsub -A YourAllocation -q prod -t 30 -n 2048 --proccount 8192 \

--mode vn --env HPCRUN_EVENT_LIST=WALLCLOCK@1000 \
flash3.hpc

40

Analysis and Visualization
• Use hpcstruct to reconstruct program structure

— e.g. hpcstruct myapp
– creates myapp.hpcstruct

• Use hpcsummary script to summarize measurement data
— e.g. hpcsummary hpctoolkit-myapp-measurements-5912

• Use hpcprof to correlate measurements to source code
— select one or a few files from your measurements to analyze
— e.g. hpcprof -S myapp.hpcstruct -I “path_to_src/*”

hpctoolkit-myapp-measurements-5912/
myapp-0000-000-983409-764.hpcrun

— produces hpctoolkit-myapp-database-5912

• Use hpcviewer to open resulting database
— if using hpcviewer on a the leadership computing platform, add

recent Java implementation to your path (for hpcviewer)
– Cray XT: module load java
– Blue Gene/P: add /opt/soft/.../java/bin to your path 41

A Special Note About hpcstruct and xlf
• IBM’s xlf compiler emits machine code for Fortran that have

an unusual mapping back to source

• To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no
— without this option, many nested loops will be missing in

hpcstruct’s output and (as a result) hpcviewer

42

43

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

Coming Attractions
• Limited hardware counter measurement on Blue Gene/P

• Statistical analysis of all profiles from a parallel run
— enable one to pinpoint load imbalance issues

• Understand how executions unfold over time
— space-time diagrams based on call stack sampling

• Performance analysis of multithreaded code
— pinpoint & quantify insufficient parallelism and parallel overhead
— pinpoint & quantify idleness due to serialization at locks

44

